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The theory of supersonic flow in nozzles is discussed, emphasis
being placed on the physical rather than the mathematical point of
view. Methods, both graphic and analytic, for designing nozzles are
described together with a discussion of design factors. Tn addition,
the analysis of given nozzle shapes to determine velocity distribution
and possible existence of shock waves is considered. A description of
a supersonic protractor is included in conjunction with a discussion
of its application to nozzle analysis ml design.

IlrrRoDmTIoN

One of the major problems in the design of a supersonic wind
tunnel is the determination of the contours of the supersonic nozzle
so that parallel and uniform flow in the test section my be assured.
Consequently, it is not surprising that the literature contains
numerous papers on the subject of supersonicnozzle design. These
vary widely in their degree of complexity and general availability.
It is the purpose of this report to discuss these various methods
and present a guide for nozzle design. OJJJYt~nsional nozzles
will be considered.

The most prominent method for determining nozzle contours is,
perhaps, that of l%mdtl and Busemann (reference 1). The usual
presentation of their method of characteristics is rather mathematical
in nature. (Se@e.g., Preiswerk, reference 2.) tiorder to provide
the designer with a clearer physical picture of the flow in a nozzle,
a different interpretation of the Pramdtl-Busemann method is presented..
The diverse systems for constructing nozzle shapes by this method me
also presented, together with certain ramifications and supplementary
useful information.

The Foelsch method (reference 3) is included because its anelytic
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nature offers certain
Shapiro (reference4)

advantages.. 5se wi32 be
has still another approach
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discussed later.
to the problem. His

method, due to its approximate nature and
advantages, will not be cmsidered.

EASIC TEEORY

because it.has no special

It is well lnmwn that, in a purely contracting~flow, the maximum
uniform velocity that can be achieved across any section is that
correspondingto the local velocity of soun& Further hcreases in
velocity cm be obtained only by subsequent expansion of the stream.

The essential and relevant features of a chaunel designed to
produce supersonic flow are shown in figure 1. A compressiblefluid
at virtuaUy zero velocity in the settling chmber is accelerated
through the contraction section to sonic spee~ in the throat where,
if the contraction section is properly designed, the flow is uniform
and parallel. The fltid is then expanded in the nozzle until the
desired Mach number is creachedin the test section where the flow
is again uniform and paraUelo In the analysis, the nozzle itself
is divided at the 5nflectionpoint of the wall into two sections:
initial and terminal.

It should be noted that there is one additionalprerequisite
for the establishmentand perpetuation of supersonic flow. This is
the main-benance of at least the mfnimm pressure ratio between the
sett13ng chariber (pressure = PO) and the test section (pressure= W)
from reference 5, page 26

7

( )
z

Po ~ + 7-1—=
%

~ %2 (1)

where ~ is the Mach tier in the test section and 7 is the
ratio of the specific heats of the gas.

An irrotational,nonviscous supersonic flow through a two-
dlmensional nozzle my be treated by means of a few simple considera—
tions. First, consider an incident unidimensional.supersonic flow over
a single curved surface. The change in local Mach nwiber between
any two potits is a function only of the change in direction of the
stream between the points or the change in direction of the tangents
to the surface at these given points.“ To consider the flow field
between two curved stiaces, however, it is convenient to replace
each surface by an infinite nuuber of infinitesimallylong straigh+
line segments, or a finite number with discreet but small length.
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Each adjacent pair of 13nes thus ccxmtituted forms a cmner.
supersonic flow about a corner is a cl.nssicalproblem and its

3

Soluticul
is-lnlown. 5 flow between two curved surfaces thus reduces to the
determination of the ccmibinedeffect of two sets of corners. This
introduces the problems of intersection and.reflection of influence,
or disturbance lines. In addition, the condition req@ring uniform
and parallel flow in th9 test section leads to the concept of
nmtraldzation of disturbance ltieso The following sections wi3J
elucidnte upon these concepts.~

Flow About a Corner

The flow about -a convex corner formed by two intersecting straight
lines has been treated analytically by Rcandtl and Meyer (reference 6,
Ppe 24@@ . For my such configuration, three regions of flow exist.
These are indicated in figure 2. The flow is uniform and pareJJ_elup-
stream and dowatream of the corner in the regions I and sIIIbounded
by the surface and the correspondingMach lines. in the region II
between these Z&ch lines, flow parameters are colistantalong radial
lines (each of which is a Mach lime) emnating from the vertex of the
corner.

W fundamental equation of fl-bouti-corner is (fig. 3)

v . K-. (*)- (90-.) (2)

where V is the expamion @e or the angle through which the flow
is turned in accelerating from a local Wch nuniberof unity to any
given Mach nuniber M, cc is the corresponding Mach -e

~2 = 7+1
y-l

Obviously, if V is known in any region, the Wch number is dete~
mined by equation (2) and can be found.

Let the subscripts 1 &d 2 refer to conditions in regions
I and 111, respectively, of figure 2, then the angle through which
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the flow is
that is, In

turned in accelerating fran a Mach numler Ml to M2,
gdng frmn region I to III, is

(3)

Ih other words, the change in exp3nsion angle is equal to the absolute
value of the chemg3 in stzwam deflection through an expansion region
due to a single corner. -

~ the stream deflection angle 8 is small, then all the expan-
sion may be considered to take pkce along the average Mach line as
shown in figure 4. This line, no lonfpr a ltie of propagation of an
infinitesimal dit3t@mnce, now ts.kesan certdn characteristics of a
shock wave; namely, the flow through it suffers a finite change in
dtiection and Mach number. It is usually refereed to as em e~ansion
wave. Little error is in~od.uced by makbg these assmqtions and, as
b approaches zero, the error vanishes. It is convenient to define
the strength of a wave as the angular deflection of the,streem that it
produces. This is numerically single valued for exyansion waves and
weak oblique shock waves.

Flow Rrame ters

Flow conditions are completely datemdned by the parameters V,
the expmsion angle, and 19, the stream angle relative to some datum
line usually taken as the flow directi in the throat. These coordi-

0

v
natesare usually written v, G, or e.

Intersection of Expansicm Waves

The problem of the interaction of the expemsim waves frcm two
oyyosed convex surfaces, such as the initial portion of a nozzle,
may be considered in its elementary form: the intersection of two
expansimn waves as d.e~ictedin figure 5.

It follows fran reference 2, pp. 55+8, that the angular change
ti direction of the streem tbrou@ an expansion wave is constant along
its length regardless of the direction or veloci~ of the flow in front
of the wave; that is to say that the expansion waves pass through each
other mutually uneffected in strength, although their inclinaticm is
altered. 5ti effect on the flow may be determtied by Supemosition
of individual effects.

.

Consider the two expsmsion waves shown in figure 5. For con-
venience, they are designated (1) and (2) and have strengths of +e
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emd -5, respectively. The upper streamline shown is deflected up
through an angle 6 by (1) and down through an angle b by (2). The
total an@e through which it iS deflected iS thus +(-) . Similarly,
the lower streamline is d.eflected first downward by (2) then upward
by (l). Its final @e is the same as for the upper streamline and
iS equal to e + EA. Jn a like manner, the final exgymsion angle can
be found to be inoreased by 6+8 for both streamlines.

Reflection of Exyansion Waves by a Wall

Conditions resulting fran the reflection of em exfmnsion wave by
a boundary may be determined by utilizing the well~own mirro-hage
conceyt. Thus, the wall may be replaced by a streamline h a fictitious
flow comprised of the original flow, plus an image flow field, as shown
in figure 6. The problem of the reflection of expsmsion waves by a
wa13 then becomes that of the intersection of expagsion waves. The
lat_@ problem was the subject of the preceding sectim.

This concept may be applied ti a converse manner in the design
of symmetrical nozzles. h this case, the straight center line of the
nozzle is repkced with a wdl. Thus, the amount of work is halved.

Neutralization of Expansicm Waves

IY a shock wave of infinitesimal strength is superimposed on an
expansion wave of equal s-trength(and by definition opposite in si~),
the flow is unchanged after passing through both. This is also very
nearly true if the waves have a finite but small strength. Therefore,
if at the point where an expansim wave hits the wall a compression
wave of equal strength is creatad, the e~ansim wave will be
neutralized. Such a coppression wave can be created, as illustrated
in figure 7, by an emgular change in direction of the wall equal to
the strength of the given expansion wave. ~ ~ctfon of the
bf lection should be such as to form a concave corner.

Flow in a Nozzle

The flow throughout a two-dimensionalnozzle can be determined
by use of the previously discussed concepts. The flow coordinates
in the nozzles shown in figures 8 and 9 are presented to illustrate
the method. While symmetrical nozzles are discussed predominantly
herein, the concepts tivolved apply to supersonic flows in geneml.

The sngle between the wall at its inflection point and the
center line (for symmetrical nozzles) is of importance in nozzle
design. For shapes simulated by straiglrkline se~ents, this

.— ——— —— ..—
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inflection point aypears as a region. ~t the subscript 1 refer to
conditions h this region immediatelypreceding the point at which
neulzalization first takes @ace. ‘lMesepositions are denoted by
arrows in figures 8 and 9.

753 folhwing relation then becomes a~parent:

In addition, it is obvious
for shock-free flow occurs

vl+el=~ (4)

that the max3mum value that e1 can have
when 81 = V1 or

el_ = $ Vt (5)

It should 3e noted tkit, M the initial curve is not approximated
by stiaight-line se~nts, 01 can equal V1 only for a nozzle which
has an abruyt ezpansion at the throat as shown in figure 10. However,
for such a nozzle, it is still yossible for (3= to be less them V t/2,
provided that some of the ezpmsion waves are allowed to %e reflected
before they are neutralized.

For any smooth initial curve, that is, with no discontinuity h
ordinate or slope from the sonic section to the inflection point,
v is greater than I(3I for 0 + O. This condition appears to le
violated in the nozzles shown in fi~s 8 and 9, wherein there exist
certain regions along the wald.where V equals 6’..The explanation
of this lies in the fact that the wall was simulated by a finite number
of corners. The error introduced by this assumption is approximably
given by

O<v v <6
exact‘— approx

where 5 is the angular deviation of each corner. In the cases
illustrated in figures 8 and 9, b equals 2°. Consequently, V
is actually greater than 9. This error is usually small and can be
ignored without serious consequencee.

For any given &ch number, whflle there are an infinite number
of satisfactorynozzles, there is one invariant paremeter: the ratio
of the areas of the test section and throat (reference 5, >. 34)

At
]()

1 2 + (7-1) Mt2 % ~

~=~ [ 7+1

—— _—. .—-—
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where A is cross-ection srea (or height in a two-d3mensiona3.nozzle),
the * refers to conditions in the throat (sonic secticm), and the sub–
script t refers to conditions in the test section.

METHOIB OF NOZZLE IIESIGIVAND ANALYSIS

l)usemmnts Mthod

BusemennSs method for designtig nozzles (reference 2) consists of
assuming an initial.curve and finding the terminal curve requtied to
give uniform and parallel flow in the test section at the destied Mach
number.

k order to desi~ a nozzle for a Mach number Mt, first find the
corresponding expansion angle Vt. Assume an initial curve, and s3mu–
late it by a series of preferably equismguler corners. Then, starting
at the throat and proceeding downstream, determine the flow field in
term of the parameters V and 13. This is discussed from the
theoretical point of view in preceding sections. Jn subsequent
sections, actual methods of analysis will be described.

AU expansion waves incident upon the wall upstream of the point
where e + v = Vt should be reflectid ad those ~cident downs~e~
of this point should be neutralized. Thus, this point becomes the
inflection point of the wall.

It is interesting to note that, while the initial curve is
arbitieq, th6 correspontig terminal curve is unique once the
tiitisl curve is established.

For em inftiitely fine mesh of eqansion waves, this method is
e-t. Moreover, for a finite mesh size, the finer it is, the more
accurate is the analysis.

This method is, perhaps, most useful in designing non onventional
7nozzles, since for conventional types, the Foelsch method to be

described later) is more convenient.

Puckett, in reference 7, introduced a variation of Busemsmn1s

method for desi@ng nozzles. Its advantages will be discussed
subsequently. The method consists briefly of starting at the middle
of the nozzle and working toward both ends.

. . . .. -.———— —-—. ..-
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.

The flow through tha nozzle at tbs maxhum expemsion section
(inflectionpoint) is assumed to have a uniform speed and uniformly
Verying direction of flow. Such conditions are illustrated in figure U..
The stipilaticn of these boundary conditions has been found from
experience to be reasonalile. With these boundary values, the terminal
section of the nozzle can be determined by the seinemethod as for the
original me Busemann nozzles. By working backward in a like msmner,
an initial section csm also be constructed. Moreover, if G1 is less

them e1-, then one or more of the expsnsion waves must have been

reflected. Since there is a choice as to which wave is reflected,
there is more them one initial.curve that will provide the syeoified
flow at the maximum e~ansion section. h fact, if the mesh size is’
allowed to beccme infinitely fine, then it follows that there are an
infinite number of initial curves that correspond to this terminal
curve. This same agreement obviously holds for initial curves
correspondhg to other terminal curves.

While, h~ever, there are an infinitenumber of suitable initial
curves for each terminal curve, this does not infer that any contour
satisf~g the area-mtio requirement is suitable. On the other hand,
the error titroducedby ustig an arbitrary curve cm be ignored for
most yractical purposes, provided that a certati amount of care is
taken. b a later section a simple method for the design of such
initial sections will be discussed.

There me several advantages to Puckettts method. First, if
the shplified method for designing the initial section is used, the
time or work involved in designing a nozzle is approximately halved.

5 second advantage becomes apperent during the actual calcu-
lation of nozzles. ~ the original Btiemann method, expansion waves
are originated at certain points along a smooth initial curve; that
is, the spacing of the exgansion waves is orderly, although it need
not be uniform. When a finite mesh size is used, scmmtimes expmsion
waves are reflected frcm the waU. at such points as to destioy the
orderliness of the spacing of the ensutig eqmnsim wave yattem,
The resulting termhal curve thus acquires slight 3rregrilarities.
These irremities disappear as the mesh size becmes infinitely
fine and, in ~ractice, one usually draws a faired curve through them.
The Puckett method does not avoid this Uficulty, but neglects it
by assuming that the termhal curve is not affected by the wave pattern ,
of the initial curve.

FcelschiS Method

Foelsch?s method (reference 3) is simikr to Puckett?s insofar .
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as one starts at
both directions.

the inflection point
It differs slightly

of
in

9

the nozzle and proceeds in
boundary conditions but its

main difference and dtiect advantage is that it is analfiic. Only

the portion of Foelschts theory w~ch deals with the e-ion section
will be discussed here.

The assumptions of this method, or rather its boundary conditions,
may le variously stated (fig. 12): (1) Along the Mach lins emanat~~
from the inflection point, the velocity vectors are cc+original,
the Mach numiberis constant along the src of the circle which Tasses
throu@ ,theinflection yoint of the waUl perpendicularly (emd obviously
its center is the origin of the velocity vectors), (3) in the region ‘
between this arc and the Mach line from the inflection mint, the Mach
ntier is a function solely of the radius from the vector origin.

Using the following notation (fig. 12)

r distance from vector origin
Pint lhch line

r. hypothetical r for M = 1

1 length of Mach line between
final curve

x coordinates measured from

Y coordinates measured from

xl,Y1 coordinates of inflection

to arbitrary point on inflection

inflectio%point

sonic section

center line

@llt

X2jyz running coordinate of inflectio~~int Mach

Yo semiheight of sonic section of nozzle

H height of test section (2yt) “

it can be shown that

r. = ~ (~1 tiradi~)
.

r = r. ‘(A/A*)

rl = r. (A1/A*) =+
sin el

Mach line and

liile

(7)

(8)

(*)

.

.—— —— ....= .—— — .—— .—.. — --——— —
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Y1—= ()* ~ (f31in radians) (gb)
Y~

2 =Mr (v- Vl) (v in radians) (lo)

X2-xl =-q

Y2 =

cos 191+ r cos (Vt- V) (ha)

r sin (vt - v) (llb)

and the coordinates of

x— xl =

Y=

the terminal curve are

x2- xl+2c08(vt-v+a) (12a)

y2+2sin(vt-v+a) (L2b)

the length of the terminal section (in tes~ection heights) is

radians) (13)

curve from MlBy varyingthe I&oh nuniber M along the terminal

~ M-t and det~ the corresponding values of a, V, r, and 2,
the coordinates of the terminal curve can be found and are determined
as a function of conditions in the test section and at the inflection
@nt ● Table I Is included to facilitate these calculations. The
initial curve, as for the Puckett method, may be treated.separately.

It can be seen that the methods of I?uckettand Foelsch are quite
similar tith regard to boundary ctitions, the formr having a constant
Mach nunber along a straight line and the latter along a circular arc.
Both assumptions are equally plausible. The difference between these
assumptions manifests itself in a sllght and inconsequentiallengthening
of the Foelsch nozzle relative to @ corresponding Puckett nozzle,

The analytic nature of the I?oelschmethod alluws nozzles to be
detemined to any desired degree of accuracy and without any such
apparatus (to he described later) as that required for the graphical
methods.

.

.
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It is titerestingto observe that this methd is one of the few
exact analytic solutionE of the genersd.nonlinear potential equation
for compressiblesupersonicflow.

The E3itial Curve

The initial curve, either exact or approximate, =t satis~
certain geometricboundary conditions: It must satisfy the area–
ratio requirements. It must have zero slope at the sonic section
and the S- onlinate, slope, and curvature (zero) at the inflection
point as the terminal curve. The ordinate, slope, and cmwature
should vary monotonicallybetween the sonic section @ the inflection
point. A simple function satisfying these limitations is

Y=yo+(%+(’-a
from which it follows that

3 (Y1– YO) cot ‘%xl=~

(14)

(15)

lZ@erience has shown that this apprmimate Mtialaurve function
can be used for both the Fuckett and Foelsch methods without any
serious error. For the original type Busemmn method, this curve can
be simulatedby appropriate straight-linesegments. In this case the
curve becomes exact.

Analysis of Nozzles

The analysis of given nozzles to detemine the velocity distri–
bution in the test section and ascertain the existence or nonexistence
of shock waves is a proces,svery d.milar to the design of nozzles. ~
fact, the procedure for the initial portion of the nozzle is identical.

b the terminal section, inst~ of neutralizing the eqxmsion
waves, they are alJ reflected emd compressionwaves started at appro-
priate places. For small angular deflection, compressionwaves may
be considered simply as negative expansion waves. b practicej where
an e~ansion wave is incident upon a wall near the position where a
compressionwave (of the same numerical strength,but opposite sign)
originates,they may be consideredto neutralize each other.

Thus from the coordinates V and 19, the velocity distribution
h the test section canbe found. The location of possible shock

.—...——— . ..— .--...
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waves is indicated by a region of converging Wch lines (or compression
waves) – thO greater the concentration of converging waves, the stronger .
the shock. A weak concentration of slowly converge waves may he too
weak to show up in a schlieren photograph or to have any noticeable
effect; hence, the term llpossiblel’shock waves was used. A nozzle
exhibiting a region of converging waves is shown schematically in
figure 13.

EFFECT OF VARIATION OF X!!

The major parameter involved in the design of nozzles is @l

or, perhaps, rather 01/~Vt. The length of the nozzle is intimately

associated with this ~ter.

As previously stated, the maximum value that el can have for
shock-free.flowat a givenhh nmiber is ~V A nozzle so designed2 t“
will he the shortest possible for that Mach nwiber and must have a
sharp throat such as the one shown k figure 10 with VI = ~V The

.

2 t“

other extrenm in designing nozzles is setting 131= O. This would
require that the nozzle have infinite length.

!Chereare,”of course, certain obvious disadvantages in desigaing
a nozzle too long or too short. An excessively long nozzle incurs
adverse boundary-layer effects of two kinds: First, the longer the
nozzle, the thicker the boundary layer, other conditions being the
same. Since %oundary-layer thlctiess is, at the present time, not very
amenable to precise calculation, a given percent error in boundary-
layer calculation is more serious when the boundary layer is thick. The
result is that flow in the test section is less likely to be uniform,
pamdlel, and shock free. Second, a thicker boundary layer represents
an unnecessary waste of ener~.

An excessively short nozzle, on the other hand, is liable to
other troubles. A ~length nozzle has for a given Mach ntier,
the msximum nmiber of expmsion waves (consideringeach to be of
finite strength) concentrated into the minhmm space. A longer nozzle
achieves the same Mach numiberby reflecting some of the waves. Thus,
it has fewer of them and these are extended over a wider range. This
is to say that the expansion waves are more concentrated in shorter
nozzles. It is then apparent that they are nmre sensitive to proper
design tham longer ones. Designing nozzles to be somewhat longer than
the midmmm incorporates what might be termed a safety factor. In
addition, there is less likeltiood for such a nozzle to have oscil-
latory flow.

.

.—— ———
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The tendency at some Germen laboratories was to design nozzles
with lengths equal to or slightly greater than the minhum, While
most of these nozzles were claimed to be satisfactory, subsequent
e~erience has shown that small gradients preciously believed negli-
gible have been found to exert strong influences on test results.

Puckett, in reference 7, suggestslusing 01 equalto from one-
W to twc%tMrds of e It is believed that at& (cl= = ~ ~t).

low l.kohnuuiberssuch nozzles will be unnecessarily long.

At the present time there are insufficient experimental data to
say exzdily how a nozzle should be designed. Eowever, experience up to
the present thne indicates that a value of

(16)

.

will provide a good working hypothesis for bh numbers uy to about
five●

The preceding equation is restricted.to air only %ecause of the
ldmitattons of past experience= The general considerations discussed
herein, however, apply to helium or any other compressible fluid.

CONSTRUWIOITcm I?’LowFIEm - LmPERsmc EmrRAcT(lR

The determination of the flow field in a nozzle has been discussed
previously from the theoretical point of view. It remains now to show
how to construct or determine the orientation of each of the Mach line
(or expansion wave) segments which make up the net that determines the
flow field. (See figs. 8 and.9.)

Var20us methods have teen proposed to do this. Analytic methods,
such as the one described in reference 8, have %een devised but are
extremely tedious. Graphical methods have been found sufficiently
accurate for most design or anlysls purposes. On the other hand, the
analytic nature of the Foelsch method allows ordinates to he determined
shply and precisely. The main use of the Busemamn theory is, at the
present time, usually restricted to the design of nonconventional
nozzle shapes and the analysis of any given shape.

A graphical method based”on the use of characteristic theory @
the hodograph plane is described in reference 2. Eowever, this method
has been superseded by the so+illed “mpersonio protractor” (reference 9),
a mdlfioation of which is desorfbed herein.

.— ——. ._ . .._— _ —-— .—— .._ _
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It is assumed that conditions along an eqmnsion wave m the
average of those h the regims it seperates. Each segment is thus
characterizedby the pair of cordinates V and e. For each value
Ofvande, there are two possible orientations of an expansion
wave. These correspmd to the two Mach lines yroduced by a point
dis”turlance. ‘l%eangle mati by em expansion wave with the datum.line
is 19+ a for the wave directed upward in the stream direction and
0 – a for the one directed similarly downward. These two casef3are
shown in figure 14.

The suyersonio protractor has two essential prts which may be
described independently. The first, shown h figures is(a) and is(b)
consists of a semicircular tmmsparent disk, pivoted at its center,
and tith a straight edge attached. It is graduated along its
circumference such that when the desired v is set over the datum
line, for emmple, V = 30°, a is represented as shown. That this
ie possible follows frcm equation (2):

v “ -%9-(’00-”) (2)

The second piece, shown in figure 16, consists simply of a
cire- disk graduated along its circumference in degrees. This
scale re~resents the stieam direction 13.

If the former part of the protractor, that providing a, is
rotated through sm angle equal to the stream directim f3, the required
orientation of the Mach line (or expansion wave) is thus determined.
This is acccmrplishedwith the protractor by superimposing the former
upon the latter concentrically and rotating the former until the
desired v is set over the desired 8. This is shown schematically
in figures lT(a) and 17(11),and the similarity of these with figure 14
should be noted. 5us, while the end potits of certain eqansiowwave
seguents may be dependent upon the previous one, each in its turn can
be orientated shply by means of this protractor, Inowing, of course,
V and f3.

Table IX, contatiing values of a correspnding to even values
of v, is included for calibrating the supersonic protractor. It
should be noted that if the amount of work tivolved does not Justify
the constriction of this protractor, a &rsfttig machine may be substi-
tuted. h this case, 13+ a can be set with the aid of table II.

BOUNIMRY-ZAYIIRCORRECTION

The problem of correcting nozzle contours for the constrict-
effect of the boundary layer has not been given adequate consideration

.

.

.——— .— _ .-
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in the past. However, reference 10, which contains
estimating boundary-l~r tldckness, has been found

15

a methai for
useful. A small

amount of experhental boundary-layer data iq also included in
reference 7.

The manner of appl@ng the correction itself is quite simple. -
One merely increases the nozzle ordinates by an amount equal to the
displacement thickness of the boundary layer. It is sometimes
desirable to keep two walls parallel. In this case, the other two
walls are corrected to allow for the boundary layer on all four.

COIW!HJDINGREMARKS

Using the methods discusssd h this report, it is possible to
design satisfactory nozzles either graphically or analytically.
While the amalytic method is to be preferred in design, the graphic
pethod can %0 extended to ticlude tb analysis of given nozzle
shapes to determine flow characteristics. A supersonic protractor
which permits rapid graphical analysis and design is described. No
correction for boundary layer has been included.
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M

1.00
1.01
1.02
1.03
1.04
1.05
1*O5
1.07
1.08
1.09
1.10
1o11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.42
1.44
1.46
1.48

[ 7 – 1.400 (air) ]

P
~

0.5283
.5221
.5160
.5099
.5039
.4979
.4919

:2
.4742
.4684
.4626
.4358
.4511
.4455
.4398
.4343
.4287
.4232
.4178
.4124
.4070
.4017
.“3964
.3912
●3851
.3&)9
.3759
.3708
.3658
.3509
.356!)
● 3512
.3454
.3417
● 3370
.3323
.3277
.3232
.3187
● 3142
*3055
.2969
.28%
.28o4

A*

I-

1.0000

●9999
●9997
.9993
.9987
.gfxb
.%m
.9961
.9949
.9935
.9921
●9905
;;2

.9850

.9&8
:;%

.9758

.9732

.9705

.9676

.9647

.9617

.9586
●9553
.9520
.9485
.9451
.9415
.9378
.9341
.9302
.9263
.9223
.9182
.9141
.9099
.9o56
.9013
.8969
.88m
.878!3
.8595
.8599

(d~g)

!30.00
81.93
78.64
76.14
74.o6
72.25
70.63
69.16
67.81
66.55
65.38
64.28
63.23
52.25
61.31
60.41’
59.55
59.73
37.94
57.18
56.44
55●74
55.05
54.39
53.75
53.13
52.53
51.94
51.38
50.82
50.28
49.76
49.25
48.~
48.27
47.79
47.33
46.89

E::
45.58
44.77
43.98
43.23
42.51

(d$vg)
o
.0447:
.L257
.2294
.3510
.4874
.6357
.7973
.96&
1.1h8
1.335
1.532
1.733
1.944
2.150
2.351
2.607
2.839
3.074
3.314
3.558
3.836
4.057
4.312
4.569
4.83o
5.093
5.359
j.627
;.89J

6:445
6.7=
7.009
7.279
7.561
;.$

8:413
8.699
8.987
9*555
.0.15
.0.73
1.32

M

1.50
1.52
1.54
1.55
1.59
1.50
1.62
1.64
l.a
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.M
1.88
1.90
1.92
1.94
1.96
1.98
2.00
2.02
2.o4
2.05
2.08
2.10
2.12
2.14
2.16
2.18
2.20
2.22
2.24
2.26
2.28
2.30
2.32
2.34
2.36
2.38

P
&

3.2724
.2646
.2370
.2496
.2423
.2353
.2284
.2217
.2151
.2098
●2026
.1966
.1907
.lbo
.1794
.1740
.1689
.1637
.1587
.1539
●1492
.1447
.14Q3
.135a
.1318
.z278
.1239
.U201
.1164
.1128
.1094
,1060
.1027
.09956
.09650
.09352
.09064
.08785
.08514
.08232
.07997
.07751
.07512
.07281
.07057

A+

A—

).8502
.8404
.8304
.8203
.8101
.7998
●7@5
.7791
.7586
.7581
.7476
.7373.
.7265
.7160
.7054
.6949
.6845
.6740
.6636
.6533
.6430
.6328
.6226
.61J25
.5023
.5926
.5328
.5730
.5634
.5538
.5444
.5350
.5258
.5167
.5077
.4988
.4900
.4813
.4727
.4543
.4550
.4478
.4397
.4317
.4239

(d~g)

41.81
41.14
40.49
39.87
39=27
3!3.6!3
3!3.12
37*57
37.04
36.53
36.03
35.55
35.08
34.62
34.18
33*75
33.33
32.~
32.52
32.13
31.76
31.39
31.03
30.68
30.33
30.00
29.67
29.35
29.o4
28.74
28.M
28.14
27.85
27.5$
27.30
?7.04
26.-/7
26.51
?6.26
?6.01
25.77
?5.53
23.30
25.07
?4.85

(d~g)

U.gl
12.4;
13.0$
13.6E
14.21
14.86
15.45
16.04
16.63
17.22
17.81
18.4-c
18.9~
19.56
.20.15
20●73
21.30
21e8e
22.45
23.02
23.59
24.15
24.7I.
23.27
25.83
26.38
26.93
27.48
28.02
28.56
29.10
29.63
39.16
30.69
31*ZL
31.73
32.25
32.76
33.27
33.78
34.28
34.78
35.28
35.77
36.26

Adapted from Notes and Tables for Use in the Anslysis of SupersonicFlow
by the staffof the Ames l-by 3-foot supersonicwind-tunnelsection.
NACA ~ifO. 1428,1947.
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TABLE I.- CONTTNU.ED.ESSENTIALP~S USED Il?E0ZZU31RESIC#

M I L
Po

2.40
2.42
2.44
2.46
2.48
2.50
2.32
2.54
2.56
2.58
2.60
2.52
2.54
2.66
2.68
2.70
2.72
2.74
2.76
2.78
2.m
2.82
2.84
2.86
2.88
2.90
2.92
2.94
2.96
2.98

;::
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.60
3.70
3.80
3.90

0.06840
.06630
.06426
.06229
.0603a
.05853
.05574
.05560
.05332
.05169
.05012
.04859
.04711
.04568
.04429
.04295
.04165
.04Q39
.03917
.03799
.03683
.03574
.03467
.03363
.03263
.03165
.03071
.029&)
.02891
.02e05
.02722
.02526
.02345
.02177
.02023
.01880
.01748
.01525
.01513
.01408
.01311
.ol.ly3
.009903
.008629
.007’532

E &lo”
A

0.4161 24.62 36.75 4.00 6.586
.4085 24.41 37.23 4.10 5.769
.4010 24.19 37.71 4.2o 5.062
●3937 23.99 38.18 4.30 4.449
.3864 23.78 38.66 4.40 3.918
●3793 23.58 39.= 4.50 3.455
.3722 23.38 39.59 4.a 3.053
.3653 23.18 40.05 4.7!) 2.701
.3585 22.99 40.51 J+.&l 2.394
“3519 =.a 40.96 4.9 2.H6
.3453 22.62 41.41 5.00 1.890
.3339 22.44 41.86 5.1 1.683
.3325 22.26 42.31 5.2 1.501
.3263 22.08 42.7’55.3 1.341
.3202 21.91 43.19 5.4 1.200
.3142 21.74 43.62 5.5 1.!375
.3083 21.57 44.05 5.6 .9643
.3025 21.41 44.48 5.7 .8664“
.2968 21.24 44.91 5.8 .7’794
.29M ZIL.0845.33 5.9 .7021
.2857 20.92 45.75 6.0 .5334
.2&3 20.77 46.16 6.1 .5721
.2750 20.62 46.57 6.2 .5174
.2698 20.47 U.98 6.3 .4584
.2648 20.32 47.39 6.4 .4247
.2598 20.17 47.79 6.5 .3355
.2549 20.03-4a.19 6.6 ●3503
.2500 19.89 49.59 6.7 .3187
.2453 lg.~ 48.98 6.8 .2902
.2407 19.61 4.37 6.9 .2645
.2362 19.47 -49.76 7.0 .2416
.2252 19.14 50.71 7.1 .2207
.2147 18.82 51.65 7.2 .2019
.2048 18.51 52.57 7.3 .1848
.1953 18.= 53.47 7.4 .1694
.1863 17.92 54.35 7.5 .3554
.1777 17.64 55.22 7.6 .1427
.1695 17.37 56.07 7.7 .1312
.1617 17.10 56.91 7.8 .3207
.1543 16.85 57.73 7.9 .1111
.1473 16.&2 58.53 8.0 .1024
.1342 16.13 60.09 8.1 .09448
.1224 15.68 61.5Q 8.2 .08723
.1.11715.26 63.04 8.3 .08060
.1021 14.86 64.44 8.4 .07454

0.09329
.98536
.07818
.07166
.06575
.06038
●05550
.05107
.04703
.04335
.04000
.03694
.03415
.03160
.02926
.02712
.02516
.02337
.02172
.02020
.01880
.01752
.01634
.01525
.01424
.01331
.01245
.OU65
.01092
.01024
.009602
.009015
.008469
.m7961
.007490
.007050
.006641
.006259
.005903
.oo5571
.005260
.004970
.004-698
.C@444
.004206

t

14.48 65.7t
14.12 67.0(
13.77 68.3:
13.45 69.54
13.14 70.71
12.84 71.!32
12.56 72.92
x2.28 73.97
12.02 74.95
u.78 75●97
11.54 76.$X?
11.31 77.84
U.09 78.73
lo>a9 79.63
10.67 80.43
10.49 81.24
10.29 82.03
10.10 82.80
9.928 83.54
9.758 84.26
9.594 84.96
9.435 85.63
9.282 86.29
9.133 36.94
8.989 87.56
8.850 88.17
8.715 88.76
8.584 39.33
8.457 @.@
!3.33390.44
8.2~3 90.97
8.097 91.49
7.984 92.00
7.873 92.49
7.766 92.97
7.662 93.44
7.561 93.90
7.452 94.34
7.366 94.76
7.272 95.21
7.181 95.62
7.092 96.03
7.005 96.43
5.920 96.82
6.837 97.20

I I

L&pted from 2TOi72S and Tables for Use in the Analysis of Supersonic Floirby
the staff of the Ames l-by s–foot supersonic wind-tunnel section. NACA
~I?o. 1428, 1947.
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TABLE 1.– COHCLUDED.

ESSENTIALPARAMETERSUSED IN NOZZLEDESIGl?

M

8.5
8.6
8.7
8.8
8.9

;:;
9.2
9.3
g.b
9*5
9.6

;:;
9.9
10.0

%xlos
P.

0.06896
.06390
.05923
.05494
●05101
●04739
.04405
●04099
.03816
.03555
.03314
.03092
.02886
.02696
.02520
.02356

A:-os
A

3.981
3*773
3.577
3.392
3.219
3.056
2.903
2.759
2.623
2.495
2.374
2.261
2.153
2.052
1.956
1● 866

(d~g)

6.756
6.677
6.600
6.525
6.451
6.379
6.309
6.240
6.173
6.107
6.042
5.979
5.917
5.857
5.797
5.739

Adapted from Notes and Tables for Use in
the Analysis of Supersonic Flow by the
staff of the Ames 1- by 3—foot supersonic
wind-tunnel section. NACA TN No. 1428,
1947.

W$@

19

97.58
97.94
98.29
98.64
98.98
99.32
99.65
99.97
100.28
100.59
m. 89
101.19
101.48
m. 76
102.04
102.32
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TABLEII.- PMWETERSUSEDINC ALIBRM’ING SUPERSONICPRUTOR1
[7 = 10400 (*)]

(L&)
o
1
2

:
5
6
7
8
9
10
n“
12
13
14
15
16
17
18
19
20
21
22
23
24

z
27
28
29
30

g
33
34
35
36
37
38

i%
41
42
43

M

1.0000
1.0808
1.1328
1.l~o
1.2170
1.25%
1.2935
1.3300
1.3649
1.-
1.4350
1.4688
L 5028
1.5365
1.5710
1.6045
I.63&I
1.6723
1.7061
1.7401
1.7743
l.-
1.8445
1.8795
1.9150
1.9502
1.9861
2.0222
2.0585
2.0957
2.1336
2.1723
2.2105
2.2492
2.2885
~032~
2.36!38
2.4108
2.45%
204942
2.5372
2.5810
2.6254
2.6716

(d~g)

go.oo
67.70
61.96
58.17
55.29
52.77
50.53
48.75
47.11
45.57
44.18
42,92
41.72
40.60
39953
Y#:

36:73
35.8a
35.08
3L31
33.%
32.83
32.15
3.49
30.85
30.23
B.64
29.06
28.49
27.97
27.41
26.90
26.40
25.91
25.43
24.99
24.53
24.07
23.&
23.22
22.80
22.38
21.98

“Adapted from reference 7e

(d~g)

44
45

;

49
50

g
53
9
55
56
57
58

‘z

E
66
68
70

$
76
78
80

E
86
m
90
92
94
96
98
100
102
104
108
SL2
SL6

L?

M

2.~79
2.7643
2.8120
2.8610
2.9105
2.9616
3.0131
3.0660
3*1193
3.1737
3.2293
3.2865
3.3451
3.4055
3 ● 4675
3*5295
3.5937
3.72&l
3.8590
4.0164
4.1733
4.3385
4.5158
4.7031
4.9032
5.319
5.349
5.595
;.$

61472
6.820
7.202
7.623
8.093
8.622
g.ao
9.887
10.558
12.58
15 ● 37
19.70

&7:o?

21..59
21.21
20.!33
20.4’6
20.09
19.73
19.38
19.06
1807CI
18.38
18.04
17.72
17.40
17.08
15.76
16.46
16.16
15.56
14.98
14.42
13.%
13.33
12.79
r2.28
II.76
u.27
10.78
10.3
9.81
9.35
8.88
8.43
7.98
7.54
7.10
6.67
6.23
5.80
5.38
4.56
3*73
2.91
2.10
1.30

.
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(a) Mach /ine directed uppVov~ Ih

s7%eam dt’fec tl”on

5tKiean7
Difeciion

(b) Mach line ctirecfed downward
in s+ea m di~ection

Figure /7- Assembl’y of supersonic Pro fvac+ov,
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